On Weakly π-Regular Rings

Raida D. Mahmood and Abdullah M. Abdul-Jabbar

Mathematical Science University, Mosul, Iraq
University of Salahaddin, Erbil, Iraq

Received: 11/10/2006
Accepted: 30/10/2007

Abstract:
In this paper, we continue, like several other authors, to study weakly π-regular rings. In particular, we investigate some characterizations and several basic properties of these rings and the relationship between them and simple rings, strongly π-regular rings, the maximality of prime ideals in ERT rings, exchange rings and Kasch rings, respectively.

Keywords: Weakly π-regular rings, strongly π-regular rings, reduced rings and ERT-rings.

1. Introduction

The relationship between various generalizations of Von Neumann regularity and the condition that every prime ideal is maximal have been investigated by many authors.[1,2,3,4] The first clearly established equivalence between a generalization of Von Neumann regularity and the maximality of prime ideals seems to have been made by Storrer[5] in the following result: If R is a commutative ring with identity then R is π-regular if and only if every prime ideal of R is maximal. Storrer’s result was extended to P. I.-rings[2] (Theorem 2.3) and bounded weakly right duo rings[3] (Theorem 3), respectively. Recently, Birkenmeier et. al.[1] showed that if R is a 2-primal ring, then $R/P(R)$ is right weakly π-regular if and only if every prime ideal of R is maximal. These results mainly explained the relation between the π-regularity and the maximality of prime ideals of rings.

The π-regularity of rings is extended to the weak π-regularity. In general, π-regular rings are weakly π-regular rings but the converse does not hold.

We investigate the connections between the results of previously mentioned papers and weak π-regularity in exchange rings, Kasch rings, locally finite rings and IFP rings, respectively. Consequently, our results in this paper have extended many of the results arrived at by other authors.[6,1,2,3] Throughout this paper the letter R denotes an associative ring with identity, and all prime ideals of R are assumed to be proper. $P(R)$ and $J(R)$ denote the prime radical and the Jacobson radical of R, respectively. For any non-empty subset X of a ring R, the right (left) annihilator of X will be denoted by $r(X)$ ($l(X)$).

Recall that:

1- A ring R is called (strongly) π-regular[7] if for every $a \in R$, there exists a positive integer n, depending on a such that $(a^n \in a^{n+1} R) \in a^n R a^n$.

Strongly π-regular is right-left symmetric.

* Principal author’s e-mail address: raida_alazawi@yahoo.com
2- A ring R is called reduced if it has no non-zero nilpotent elements.
3- A ring R is called semi-prime if it has no non-zero nilpotent ideals.
4- A ring R is called right (left) quasi-duo \cite{4} if every maximal right (left) ideal of R is a two-sided ideal.
5- A ring R is called ERT-ring \cite{3} if every essential right ideal of R is a two-sided ideal.
6- A ring R is called reversible \cite{8} if $ab = 0$ implies $ba = 0$ for $a, b \in R$.
7- A ring R is said to be locally finite if every finite subset in it generates a finite semi-group multiplicatively.\cite{9}

2. Characterizations and Basic Properties

Following \cite{10}, a ring R is said to be right (left) weakly π-regular if for every $a \in R$, there exists a positive integer n such that $a^n \in a^n Ra^n R (a^n \in Ra^n Ra^n)$. R is called weakly π-regular if it is both right and left weakly π-regular.

We now consider some new characterizations and several basic properties of weakly π-regular rings.

Theorem 2.1:
Let R be a reduced ring. Then, R is weakly π-regular if and only if for every $a \in R$, $r(a^n) \oplus Ra^n R = R$, for some positive integer n.

Proof:
Assume that $R = r(a^n) \oplus Ra^n R$, then $d + ba^n c = 1$, for some $b, c \in R$ and $d \in r(a^n)$. So, $a^n d + a^n ba^n c = a^n$. Thus, $a^n = a^n ba^n c$, whence R is weakly π-regular.

Conversely, assume that R is weakly π-regular ring. Then, for every $x \in R$, there exists $y \in Ra^n R$ and a positive integer n such that $x^n = x^n y$. This implies that $x^n (1 - y) = 0$ and hence $(1 - y) \in r(x^n)$. Therefore, $r(x^n) + Rx^n R = R$. Let $z \in r(x^n) \cap Rx^n R$. Then, $x^n z = 0$ and hence $x^n z t = 0$, for some $t \in R$. This implies that $z t \in r(x^n) = r(x^n)$ since R is reduced. So, $z Rx^n = (0)$ and $z Rx^n R = (0)$, then $z^2 = 0$. Since R is reduced, then $b = 0$. Therefore, $r(x^n) \cap Rx^n R = (0)$. Hence the claim follows.

Lemma 2.2: \cite{10}
If R is a right (left) weakly π-regular ring, then $J(R)$ is a nil ideal.

Proposition 2.3:
Let R be a weakly π-regular ring and for every $a \in R$, $r(a^n) \subset r(a)$. Then, $a R = a Ra^n R$, for some positive integer n.

Proof:
Assume that R is a weakly π-regular, then for every $a \in R$, there exist $b, c \in R$ such that $a^n = a^n ba^n c$, for some positive integer n. Therefore, $a^n (1 - ba^n c) = 0$. So, $1 - ba^n c \in r(a^n) \subset r(a)$. Thus, $a(1 - ba^n c) = 0$ and hence it follows that $a = a ba^n c$.

Theorem 2.4:
Let R be a semi-prime ring such that each non-zero right ideal contains a non-zero ideal. If $R / r(a)$ is weakly π-regular ring, for every $a \in R$, then R is weakly π-regular.
Proof:

Let $0 \neq a \in R$ such that $a^2 = 0$. Then, by the assumption that there is a non-zero ideal I of R with $I \subseteq aR$, we claim $\ell(a) \cap I \neq 0$. For if $Ia = 0$, then $I \subseteq \ell(a)$. If $Ia \neq 0$, then $Iaa = 0$ implies $Ia \subseteq \ell(a)$. But, since R is semi-prime, then $0 \neq (\ell(a) \cap I)^2 \subseteq \ell(a)I \subseteq \ell(a)aR = 0$ is a contradiction. Consequently, R is reduced. Now, assume that $R/r(a)$ is weakly π-regular, for every $a \in R$ and a positive integer n, $a+r(a) \in R/r(a)$, there exist $b+r(a), c+r(a) \in R/r(a)$ such that

$\sum_{k=0}^{n-1} a^k + r(a) = (\sum_{k=0}^{n-1} a^k + r(a)) (b + r(a)) (\sum_{k=0}^{n-1} a^k + r(a)) (c + r(a))$

$= a^n ba^n c + r(a)$. Then, $(a^n - a^n ba^n c) \in r(a)$. This implies that $a(a^n - a^n ba^n c) = 0$. Therefore, $(1 - ba^n c) \in r(a^{n+1}) = r(a^{n+1})$ since R is reduced, then $a^n = a^n ba^n c$. Whence R is weakly π-regular.

3. The Connection Between Weakly π-Regular Rings and Other Rings

A ring R is said to be abelian if every idempotent element of R is central. Warfield[11] introduced the class of exchange rings, where a ring R is an exchange ring if the right regular module R has the finite exchange property and proved that the definition is left-right symmetric. In[9] the following result is proved.

Lemma 3.1:
Every strongly π-regular ring is right weakly π-regular.

Lemma 3.2:[5]
Any abelian exchange ring is quasi duo.

Now, we investigate the relationship between the weakly π-regular and strongly π-regular in exchange rings.

Theorem 3.3:
Let R be an abelian and exchange ring. Then, R is a right weakly π-regular if and only if R is a strongly π-regular.

Proof:

Assume that R is a weakly π-regular ring. Then, for every $x \in R$, there exists a positive integer n such that $x^nR = x^nRx^nR$. Since R is an abelian and exchange ring, then R is a right quasi duo by Lemma 3.2. Now, we claim that $x^nR + r(x^n) = R$. If not, there is a maximal right ideal M of R such that $x^nR + r(x^n) \subseteq M$. Then, $x^nR = x^nM$ and so $x^n = x^n y$, for some $y \in M$. Hence $x^n(1 - y) = 0$ and so $(1 - y) \in r(x^n) \subseteq M$, which is a contradiction. Therefore, R is a strongly π-regular ring.

Conversely, assume that R is a strongly π-regular ring, then by Lemma 3.1, R is a weakly π-regular ring.

Lemma 3.4:[4]
A ring R is a right quasi duo if and only if $R/J(R)$ is a reduced ring.

Furthermore, we have the following proposition.

Proposition 3.5:
Let R be an abelian and exchange ring. Then, the following statements are equivalent:

1- R is strongly π-regular.
2. R is π-regular.
3. R is a right (left) weakly π-regular.
4. $R/J(R)$ is a strongly regular ring with nil $J(R)$.

Proof:

$\Rightarrow (2) \Rightarrow (3)$. It is directly verified.

$(3) \Rightarrow (4)$. Assume that R is a right (left) weakly π-regular. Since R is an abelian and exchange ring, then by Theorem 3.3, R is strongly π-regular and hence, $R/J(R)$ is strongly π-regular. Also, by Lemma 3.4, $R/J(R)$ is reduced and hence it is strongly regular. By Lemma 2.2, $J(R)$ is nil.

$(4) \Rightarrow (1)$. Assume that $R/J(R)$ is a strongly regular ring. It follows from (Corollary 2, 6, Theorem 3) and Theorem 3.3 that R is a strongly π-regular ring.

Recall that a ring R is right Kasch if every maximal right ideal is a right annihilator.

Proposition 3.6:
If a right Kasch ring R is reversible, then the following statements are equivalent:

1. R is strongly π-regular.
2. R is right weakly π-regular.

Proof:
From Lemma 3.2, it follows that (1) implies (2).

Now, we show that, $(2) \Rightarrow (1)$. Let M be any maximal right ideal of R. Since R is a right Kasch, then $M = r(a)$, for some $a \in R$. For any $x \in M$ we have $ax=0$. Since R is reversible, then $xa=0$ and $xar=0$ for all $r \in R$, so $arx=0$ and $aRx=0$. This implies that $Rx \subseteq r(a)=M$, which proves that M is an ideal of R. Assume that R is right weakly π-regular. Then, for every $b \in R$, there exists a positive integer n such that $b^n R b^n R = b^n R$. We claim that $bR + r(b^n) = R$. If not, there is a maximal right ideal N of R such that $bR + r(b^n) \subseteq N$. Then, $b^n R = b^n N$, and so $b^n = b^n c$, for some $c \in M$. Hence $b^n (1-c) = 0$ and so $(1-c) \in r(b^n) \subseteq N$, which is a contradiction. Whence R is strongly π-regular.

Recall that a ring R is N-ring (also called a 2-primal ring) if it is a prime radical that coincides with the set of all nilpotent elements of R. Recall also that a ring R is called bounded index of nilpotency if there exists a positive integer n such that $a^n = 0$, for all nilpotent elements a of R.

Lemma 3.7:[12]
Let R be a right quasi duo ring of bounded index of nilpotency with $J(R)$ nil. Then, R is N-ring.

Lemma 3.8:[4]
Let R be a right quasi duo ring. If every prime of R is maximal then R is strongly π-regular.

Proposition 3.9:
Let R be a reversible, right Kasch ring of bounded index of nilpotency. Then, the following statement is equivalent:

1. R is strongly π-regular.
2. R is π-regular.
3- $R/J(R)$ is π-regular and $J(R)$ is nil.
4- R is right (left) weakly π-regular.
5- $R/J(R)$ is right weakly π-regular.
6- $R/P(R)$ is right weakly π-regular.
7- Every prime ideal of R is maximal.

Proof:

By Proposition 3.6, a ring R is right (or left) weakly π-regular if and only if R is strongly π-regular, and if and only if R is π-regular when R is reversible, right Kasch ring, we obtain (1) \iff (4) and (1) \iff (2). Also by Proposition 3.6, (3) \implies (5).

(2) \implies (3), (4) \implies (5) and (4) \implies (6). These are obvious.

(5) \implies (1). Assume $R/P(R)$ is right weakly π-regular, then by Proposition 3.6, $R/P(R)$ is strongly π-regular. Thus, R is strongly π-regular (Theorem 2.1).[2]

(6) \implies (7). Assume $R/J(R)$ is right weakly π-regular and $J(R)$ is nil. Since $J(R)$ is nil, then by Lemma 3.7, R is N-ring, $J(R) = P(R)$. By (4), every prime ideal of R is maximal.

(7) \implies (1). Assume that (7) holds. Let P be a prime ideal of R. Then, P is maximal. From Lemma 3.8, R is strongly π-regular.

Definition 3.10:[13]

Let I be an arbitrary ideal of the ring R. We say that the idempotents of R/I can be lifted into R in case every idempotent element of R/I is of the form $e + I$, where e is an idempotent element of R.

Theorem 3.11:

Let R be an abelian locally finite ring. Then, the following statements are equivalent:

a- R is strongly π-regular.
b- R is π-regular.
c- R is right (left) weakly π-regular.
d- $J(R)$ is right (left) weakly π-regular and $J(R)$ is nil.

Proof:

(a) \implies (b) \implies (c) \implies (d). It is obvious.

(b) \implies (a). Assume that $R/J(R)$ is a right weakly π-regular ring, then by Theorem 3.3, $R/J(R)$ is strongly π-regular. Also, by Lemma 3.11, $R/J(R)$ is reduced and so it is strongly regular. Therefore, for each $x \in R$, there exists $y \in R$ such that $(x - xyx) \in J(R)$. Denote $x + J(R)$ by x^-. By hypothesis, every idempotent in $R/J(R)$ can be lifted to an idempotent of R. Since $J(R)$ is a nil ideal, then there exists $e \in R$ such that $e = x^2 = e \in R$ and we obtain $x^- = x = x^- 2y = x^- y = x = ex^-$. But $x-ex$ is nilpotent, and there exists a positive integer n such that $(x-ex)^n = 0$. Thus, $x^n \in eR$ because e is central (abelian), i.e., $x^n R \subseteq eR$, $e^2 = x^2y = x^- y = x^- 2y = \ldots = x^n - y^n$. Then, it follows that $(e-x^n) \in J(R)$ and $(e-x^n)^m = 0$ because $J(R)$ is a nil ideal, for some positive integer m. Now, we have $e \in x^n R$, i.e., $eR \subseteq x^n R$ and, consequently, $x^n R = eR$. Since R is an abelian, then R is strongly π-regular.
Now we investigate the relationship between the weakly π-regular ring and the maximality of prime ideals in locally finite rings.

Lemma 3.12:
Let R be a locally finite abelian ring. If R is of bounded index of nilpotency, then R is N-ring with $P(R) = J(R) = N(R)$.

Lemma 3.13:
Let R be N-ring. Then, $R/P(R)$ is a right weakly π-regular if and only if every prime ideal is a maximal.

Proposition 3.14:
Let R be a locally finite abelian ring. If R is of bounded index of nilpotency, then the following statements are equivalent:
1. $R/J(R)$ is right weakly π-regular and $J(R)$ is nil.
2. Every prime ideal of R is maximal.

Proof:
(1) \Rightarrow (2). Assume (1). By Lemma 3.13, $P(R) = N(R) = J(R)$. By Lemma 3.12, every prime ideal of R is maximal.
(2) \Rightarrow (1). Assume (2). By Lemma 3.14, $R/P(R)$ is right weakly π-regular and so $R/J(R)$ is right weakly π-regular. By Lemma 3.13, $P(R) = J(R) = N(R)$, $J(R)$ is nil.

Lemma 3.15:
Let R be an abelian right quasi duo ring. Then, the following statements are equivalent:
1. R is a strongly π-regular ring.
2. R is π-regular ring.
3. R is a right (left) weakly π-regular ring.
4. $R/J(R)$ is a Von Neumann regular ring with nil $J(R)$.
5. $R/J(R)$ is a strongly regular ring with nil $J(R)$.

The following proposition extends Lemma 3.15.

Proposition 3.16:
Let R be a locally finite abelian ring. If R is of bounded index of nilpotency, then the following conditions are equivalent:
1. R is strongly π-regular.
2. R is π-regular.
3. R is right weakly π-regular.
4. $R/J(R)$ is a Von Neumann regular ring with nil $J(R)$.
5. $R/J(R)$ is a strongly regular ring with nil $J(R)$.
6. $R/J(R)$ is right weakly π-regular with nil $J(R)$.
7. $R/P(R)$ is right weakly π-regular.
8. Every prime ideal of R is maximal.

Proof:
It is an immediate consequence of Lemma 3.15 and Proposition 3.14.

According to [15], a one-sided ideal of a ring R is said to have the insertion of factors-principal (or simply IFP) if $ab \in I$ implies $aRb \subseteq I$ for $a, b \in R$. Hence, we shall call a ring R an IFP ring if the zero ideal of R has the IFP.

Lemma 3.17:
If R is an IFP ring, then $P(R) = N(R)$.

Theorem 3.18:
Let R be an IFP ring. Then, the following statements are equivalent:
a- $R/J(R)$ is right weakly π-regular and $J(R)$ is nil.

b- Every prime ideal of R is maximal.

Proof:

(a) \Rightarrow (b). Assume (a). Since R is an IFP ring, then by Lemma 3.17, $P(R) = N(R)$. Also $J(R)$ is nil, $J(R) = P(R)$. By Lemma 3.13, every prime ideal of R is maximal.

(b) \Rightarrow (a). Assume (b). By Lemma 3.13, $R/ P(R)$ is right weakly π-regular and so $R/J(R)$ is right weakly π-regular. Now, let $a \in J(R)$. Consider $a^* \in R^* = R/ P(R)$. Since R^* is right weakly π-regular, there exists a positive integer n such that $a^* \ R^* = a^* \ R^* a^* \ R^*$. So, $a^* \ n = a^* \ b^* \in R^* a^* \ R^* \subseteq J^*(R)$, where $J^*(R) = J(R)/ P(R)$. Then, $a^* \ (J^* - b^*) = 0^*$ and so $a^* \in P(R)$. Since R is an IFP, $a \in P(R)$, and hence $J(R)$ is nil.

References

